Mildly degenerate Kirchhoff equations with weak dissipation: global existence and time decay

نویسندگان

  • Marina Ghisi
  • Massimo Gobbino
چکیده

We consider the hyperbolic-parabolic singular perturbation problem for a degenerate quasilinear Kirchhoff equation with weak dissipation. This means that the coefficient of the dissipative term tends to zero when t → +∞. We prove that the hyperbolic problem has a unique global solution for suitable values of the parameters. We also prove that the solution decays to zero, as t → +∞, with the same rate of the solution of the limit problem of parabolic type. Mathematics Subject Classification 2000 (MSC2000): 35B25, 35B40, 35L70, 35L80.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global solutions and exponential decay for a nonlinear coupled system of beam equations of Kirchhoff type with memory in a domain with moving boundary

In this paper we prove the exponential decay in the case n > 2, as time goes to infinity, of regular solutions for a nonlinear coupled system of beam equations of Kirchhoff type with memory and weak damping utt +∆ 2u−M(||∇u||2L2(Ωt) + ||∇v|| 2 L(Ωt) )∆u + ∫ t 0 g1(t− s)∆u(s)ds + αut + h(u− v) = 0 in Q̂, vtt +∆ v −M(||∇u||2L2(Ωt) + ||∇v|| 2 L(Ωt) )∆v + ∫ t 0 g2(t− s)∆v(s)ds + αvt − h(u− v) = 0 in...

متن کامل

A ug 2 01 4 Kirchhoff equations with strong damping

We consider Kirchhoff equations with strong damping, namely with a friction term which depends on a power of the “elastic” operator. We address local and global existence of solutions in two different regimes depending on the exponent in the friction term. When the exponent is greater than 1/2, the dissipation prevails, and we obtain global existence in the energy space assuming only degenerate...

متن کامل

Global Existence and Energy Decay Rates for a Kirchhoff-Type Wave Equation with Nonlinear Dissipation

The first objective of this paper is to prove the existence and uniqueness of global solutions for a Kirchhoff-type wave equation with nonlinear dissipation of the form Ku'' + M(|A (1/2) u|(2))Au + g(u') = 0 under suitable assumptions on K, A, M(·), and g(·). Next, we derive decay estimates of the energy under some growth conditions on the nonlinear dissipation g. Lastly, numerical simulations ...

متن کامل

Global Weak Solutions to the Compressible Quantum Navier-Stokes Equations with Damping

The global-in-time existence of weak solutions to the barotropic compressible quantum Navier-Stokes equations with damping is proved for large data in three dimensional space. The model consists of the compressible Navier-Stokes equations with degenerate viscosity, and a nonlinear third-order differential operator, with the quantum Bohm potential, and the damping terms. The global weak solution...

متن کامل

Global Existence and Decay Estimates for Nonlinear Kirchhoff–type Equation with Boundary Dissipation

In this paper, we consider the initial-boundary value problem for nonlinear Kirchhofftype equation utt −φ(‖∇u‖2)Δu−aΔut = b|u|β−2u, where a,b > 0 and β > 2 are constants, φ is a C1 -function such that φ(s) λ0 > 0 for all s 0 . Under suitable conditions on the initial data, we show the existence and uniqueness of global solution by means of the Galerkin method and the uniform decay rate of the e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009